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Abstract

How many people can hide in a given terrain, without any two of them seeing each other? We are interested in
finding the precise number and an optimal placement of people to be hidden, given a terraiveviibes. In this
paper, we show that this is not at all easy: The problem of placing a maximum number of hiding people is almost
as hard to approximate as theaMimum CLIQUE problem, i.e., it cannot be approximated by any polynomial-
time algorithm with an approximation ratio of for somes > 0, unless P= NP. This is already true for a simple
polygon with holes (instead of a terrain). If we do not allow holes in the polygon, we show that there is a constant
¢ > 0 such that the problem cannot be approximated with an approximation ratie- ef & 2002 Published by
Elsevier Science B.V.
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1. Introduction and problem definition

While many of the traditional art gallery problems such a&RVEx GUARD and ROINT GUARD deal
with the problem of guarding a given polygon with a minimum number of guards, the problem of hiding a
maximum number of objects from each other in a given polygon is intellectually appealing as well. When
we let the problem instance be aterrain rather than a polygon, we obtain the following background, which
is the practical motivation for the theoretical study of our problem: A real estate agency owns a large,
uninhabited piece of land in a beautiful area. The agency plans to sell the land in individual pieces to
people who would like to have a cabin in the wilderness, which to them means that they do not see any
signs of human civilization from their cabins. Specifically, they do not want to see any other cabins. The
real estate agency, in order to maximize profit, wants to sell as many pieces of land as possible.

In an abstract version of the problem we are given a terrain which represents the uninhabited piece
of land that the real estate agency ownde&ain T is a two-dimensional surface in three-dimensional
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space, represented as a finite set of vertices in the plane, together with a triangulation of their planar
convex hull, and a height value associated with each vertex. By a linear interpolation inbetween the
vertices, this representation defines a bivariate continuous function. The corresponding surface in spac
is also called a 2.5-dimensional terrain. A terrain divides three-dimensional space into two subspaces, i.e.
a space above and a space below the terrain, in the obvious way. In the literature, a terrain is also called
triangulated irregular networKTIN), see [16]. The problem now consists of finding a maximum number

of lots (of comparatively small size) in the terrain, upon which three-dimensional bounding boxes can
be positioned that represent the cabins such that no two points of two different bounding boxes see eact
other. Two pointseeeach other, if the straight line segment connecting the two points does not intersect
the space below the terrain. Since the bounding boxes that represent the cabins are small compared to tt
overall size and elevation changes in the terrain (assume that we have a mountainous terrain), we ma
consider these bounding boxes to be zero-dimensional, i.e., to be points on the terrain. We are now read
to formally define the first problem that we study:

Definition 1. The problem M\XIMUM HIDDEN SET ON TERRAIN asks for a setS of maximum
cardinality of points on a given terraifi, such that no two points i see each other.

In a variant of the problem, we introduce the additional restriction that these points on the terrain must
be vertices of the terrain.

Definition 2. The problem M\XIMUM HIDDEN VERTEX SET ON TERRAIN asks for a setS of
maximum cardinality of vertices of a given terréih such that no two vertices ifi see each other.

In a more abstract variant of the same problem, we are given a simple polygon with or without holes
instead of a terrain. Aimple polygon with holeis the plane is given by its ordered sequence of vertices
on the outer boundary, together with an ordered sequence of vertices for each Isofgplé polygon
without holesin the plane is simply given by its ordered sequence of vertices on the outer boundary.
Two points in the polygon see each other, if the straight line segment connecting the two points does not
intersect the exterior (and the holes) of the polygon. Again, we can impose the additional restriction that
the points to be hidden from each other must be vertices of the polygon. This yields the following four
problems.

Definition 3. The problem M\xXIMUM HIDDEN SET ON POLYGON WITH(OUT) HOLES asks for a sef
of maximum cardinality of points in the interior or on the boundary of a given polygpsuch that no
two points inS see each other.

Definition 4. The problem MaxiIMumM HIDDEN VERTEX SET ON POLYGON WITH(OUT) HOLES asks
for a setS of maximum cardinality of vertices of a given polygdh such that no two vertices ifi see
each other.

In this paper, we propose a reduction fromaMmMum CLIQUE to MAXIMUM HIDDEN SET ON
PoOLYGON WITH HOLES. The same reduction with minor modifications will also work fonkiMum
HIDDEN SET ON TERRAIN, MAXIMUM HIDDEN VERTEX SET ON POLYGON WITH HOLES, and
MAXIMUM HIDDEN VERTEX SET ON TERRAIN. MAXIMUM CLIQUE cannot be approximated by
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a polynomial-time algorithm with a ratio of'¢ unless NP= ZPP? and with a ratio of2*?~¢ unless
NP = P for anye > 0, wheren is the number of vertices in the graph [9]. We will show that our reduction
is gap-preserving (a technique proposed in [1]), and thus show inapproximability results for all four
problems. MaxiIMuM CLIQUE consists of finding a maximum complete subgraph of a given géaph
as usual.

For input polygons without holes, we propose a reduction fromxMiuM 5-OCCURRENCE2-
SATISFIABILITY TO MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES, which works for
MAXIMUM HIDDEN VERTEX SET ON POLYGON WITHOUT HOLES as well.

Definition 5. The problem MAXIMUM 5-OCCURRENCE2-SATISFIABILITY consists of finding a truth
assignment for the variables of a given Boolean formula. The formula consists of disjunctive clauses with
at most two literals and each variable appears in at most 5 literals. The truth assignment must satisfy a
maximum number of clauses.

MAXIMUM 5-OCCURRENCEZ2-SATISFIABILITY is APX-hard, which is equivalent to saying that
there exists a constant> 0 such that no polynomial algorithm can achieve an approximation ratio of
1+ ¢ for MAXIMUM 5-OCCURRENCEZ2-SATISFIABILITY . See [3] for an introduction to the class APX
and for the relationship between the two classes APX and MaxSNP, see [12] for the MaxSNP-hardness
proof of MAXIMUM 5-OCCURRENCEZ2-SATISFIABILITY and for the definition of MaxSNP. Please note
that MaxSNP-hardness implies APX-hardness [3].

We show that our reduction is gap-preserving and thus establish the APX-hardnegs<ofiv
HIDDEN (VERTEX) SET ON POLYGON WITHOUT HOLES.

There are various problems that deal with terrains. Quite often, these problems have applications in
the field of telecommunications, namely in setting up communications networks. There are some upper
and lower bound results on the number of guards needed for several kinds of guards to collectively
cover all of a given terrain [2]. Very few results on the computational complexity of terrain problems are
known. The shortest watchtower (from where a terrain can be seen in its entirety) can be computed in
time O(n logn) [17]. The problem of finding a minimum number of vertices of a terrain such that guards
at these vertices see all of the terrain is NP-hard and cannot be approximated with an approximation
ratio that is better than logarithmic in the number of vertices of the terrain. Similar results hold for the
variation, where guards may only be placed at a certain given height above the terrain [7]. One of the most
intensely studied problems on terrains is the problem of computing the shortest path between two points
on the terrain. This problem can be solved in timg:®g?(n)) [10]. Many results (upper and lower
bounds, as well as computational complexity results) are known for visibility problems with polygons as
input structures. See [11,14,15] for an overview, as well as more recent work on the inapproximability of
VERTEX/EDGE/POINT GUARD on polygons with [6] and without holes [4].

The problems MxIMUM HIDDEN SET ON A POLYGON WITHOUT HOLES and MAXIMUM HIDDEN
VERTEX SET ON A POLYGON WITHOUT HOLES are known to be NP-hard [13]. This immediately
implies the NP-hardness of the corresponding problems for polygons with holes. A quite simple reduction
from these polygon problems to the terrain problems (as given in Section 3) even implies the NP-hardness
for the two terrain problems as well. We report the finstpproximability resultdor these problems.

17PP the class of problems that can be solved in expected polynomial time by a probabilistic algorithm that never makes
an error, i.e., only the running time is stochastic.
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In Section 2, we propose a reduction fromakmMumMm CLIQUE to MAXIMUM HIDDEN SET ON
PoLYGON wITH HOLES. We show that our reduction is gap-preserving and obtain our inapproximability
results for MaxiMum HIDDEN (VERTEX) SET ON A POLYGON WITH HOLES. We show that our
proofs also work for M\xiMuM HIDDEN (VERTEX) SET ON TERRAIN with minor modifications
in Section 3. In Section 4, we show the APX-hardness a@fxMium HIDDEN (VERTEX) SET ON
POLYGON WITHOUT HOLES. We draw conclusions in Section 5.

2. Hidingin polygonswith holes

We propose a reduction from AkimumMm CLIQUE to MAXIMUM HIDDEN SET ON POLYGON WITH
HoLEsthat constructs a polygon with holes for the hiding instance that very naturally corresponds to the
input graph of the clique instance.

Suppose we are given an instantef MAXIMUM CLIQUE, i.e., an undirected grapi = (V, E),
where V = vy, ...,v,_1. Let m := |E|. Fig. 1 shows an example. We construct an instaficef
MAXIMUM HIDDEN SET ON POLYGON WITH HOLES as follows.I’ consists of a polygon with holes.

The polygon is basically a regulanyon with holes, but we replace every other vertex by a comb-
like structure. Each hole is a small triangle designed to block the view of two combs from each other,
whenever the two vertices, to which the combs correspond, are connected by an edge in the graph. Fig. :
shows as an example the polygon with holes constructed from the graph in Fig. 1. (Note that only the
solid lines are lines of the polygon and also note that the combs are not shown in Fig. 2.)

Let the regular 2-gon consist of verticesy, vy, . .., v,_1, v,_; in counterclock-wise order, to indicate
that we map each vertax € V in the graph to a vertex; in the polygon.

We need some notation, first. Let; denote the intersection point of the line segment figm to v;
with the line segment from; to v;, as indicated in Fig. 3. (Note that we make liberal use of the notation
index for the vertices, i.ey; ;1 is strictly speakingv; 1mod., accordingly forv;_;.) Let d denote the
minimum of the distances ef ; from ¢; ;. 1, where the minimum is taken over @llj =1,...,n — 1.

Let ¢;; (¢;;) denote the point at distane&/3 from e; ; on the line fromv/_; to v/ that is closer to
v;_, (v}). Letm; be the midpoint of the line segment from vertgxo v; 1 and letm; be the intersection

@" 0
)

Fig. 1. A graph with five vertices.
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Fig. 2. Polygon constructed from the graph in Fig. 1.

, ,
Vi Vi

Fig. 3. Pointse; ;, ¢/, ande] ;.

point of the line fromw; to m; and frome;f,-+1 toe;,;; (see Fig. 3). Finally, Ie&Ij denote the intersection
point of the line frome; ; to m; and the line frome;’; to m|_,. The detailed construction of these points

is shown in Fig. 3.
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WIO Wl

W 2 Vi1

Fig. 4. Construction of the comb of.

We let the triangle formed by the three verticgs, e ; and eT be a hole in the polygon iff there
exists an edge v from v; to v;. Recall Fig. 2, which glves an example We now refine the polygon
obtained so far by cutting off a small portion at each vegtexror each € {0, . — 1}, we introduce
two new vertices); o andv; 2,4 as indicated in Fig. 3. Vertex; 2., is defined as the intersection point
of the line that is parallel to the line from_; to v; and goes through poimﬁi_l and of the line fromy;
to v/. Symmetrically, vertew; o is defined as the intersection point of the line that is parallel to the line
from vi41 to v; and that goes through poiat; ,; and of the line fromy; to v;_;.

We fix n? additional vertices 1, ..., v; ,2 on the line segment fromy o to v; 2,1 for eachi as shown
in Fig. 4. For a fixed, the two vertices;; andv; ;,1 have equal distance for dlk {0, ..., n?}. Finally,
we fix n? 4 1 additional verticesv; ; for I € {0, ..., n?} for eachi. Vertexw; ; is defined as the intersection
point of the line from vertex; ; throughwv;,; with the line from vertexv; throughv;,,; The polygon
between two vertices;_; andv; is now given by the following ordered sequence of vertices:

/
Ui_]_a Ui,09 wi,09 Ui,la wi,la ey Ui’nzy wi’nzy Ui7n2+19 Ui

as indicated in Fig. 4. We call the set of all triangles, w, ;, v; ;41 for a fixedi and alll € {0, ..., n?}
thecomb ofv;.
The constructed polygon satisfies the following property.

Lemma 1. In any feasible solutiors’ of the MAXIMUM HIDDEN SET ON POLYGON WITH HOLES
instancel’, at most2xn points inS can be placed outside the combs.

Proof. In each of then trapezoids{v;_,, v}, v; ,241, vio} (see Figs. 2 and 3), there can be at most
one point, which gives points in total. Moreover, by our construction any popin the trapezoid
{vi_q,vi,m;,m;_;} (not in the holes) can see every poipt in the n-gon {vg, ..., v,} except for
points p’ in any of the holes and (possibly) except for poiptan the trianglesv,_,, m;_,, ej_l’,.} and
{vi,m}, e 1,} (see Fig. 3). Therefore, all points 81 that lie in then-gon {vy, ..., v,} must lie in only
one of then polygons{e;”, ;, m}_,, m}, ef,4;, v}, v/_,}. Obviously, at most points can be hidden in any
one of these polygons. O

We have the following observation, which follows directly from the construction.
Observation 1. Any point in the comb of; sees the entire comb of vertex if (v;, v;) is not an edge in

the graph. If(v;, v;) is an edge in the graph, then no point in the comb;dees any point in the comb
Of 'Uj.
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Given a feasible solutio§’ of the MAXIMUM HIDDEN SET ON POLYGON WITH HOLES instancel’,

we obtain a feasible solutiofi of the MAxiIMuUM CLIQUE instancel as follows: A vertexv; € V is in
the solutions, iff at least one point fron$’ lies in the comb ofy;. To see thafS is a feasible solution,
assume by contradiction that it is not a feasible solution. Then, there exists a pair of vertices S
with no edge between them. But then, there is by construction no hole in the polygon to block the view
between the comb af; and the comb of;.We need to show that the construction/6tan be done in
polynomial time and that a feasible solution can be transformed in polynomial time. There®ayel2
vertices in each of the combs. We have additionalverticesv.. There are 2 holes for each edge in the
graph and each hole consists of 3 vertices. Therefore, the polygon consisisto2%° + 2n vertices.
It is known in computational geometry that the coordinates of intersection points of lines with rational
coefficients can be expressed with polynomial length [8]. All of the points in our construction are of this
type. Therefore, the construction is polynomial. The transformation of a feasible solution can obviously
be done in polynomial time.

We obtain our inapproximability result, again, by using the technique of gap-preserving reductions,
which consists of transforming a promise problem into another promise problem. Let OPT denote the size
of an optimum solution of the MxiIMuM CLIQUE instancel, let OPT denote the size of an optimum
solution of the MaxiIMUM HIDDEN SET ON POLYGON WITH HOLES instancel’, let k < n, and let
e > 0.

Lemma2. OPT> k = OPT > n.

Proof. If OPT > k, then there exists a clique ihof sizek. We obtain a solution fof’ of sizen?k by
simply letting then? verticesw;; for I € {0, ..., n?} be in the solution if and only if vertex; € V is in
the clique. The solution thus obtained Bris feasible (see Observation 1)O

Lemma3. OPT< k/nY/?~¢ = OPT < n?k/nY?=¢ + 2n.

Proof. We prove the contraposition:

opT > K Lo OPT>

Z iz + = Z e
Suppose we have a solution Bfwith n2k /n'/2=¢ 4 2n points. At most 2 of the points in the solution
can be outside the combs, because of Lemma 1. Therefore, anféggt/?>~¢ points must be in the
combs. From the construction of the combs, it is clear that at mogbints can hide in each comb.

Therefore, the number of combs that contain at least one point from the solution is at least

n2k/nl/2—5 k
n2 T pl/2—e

The transformation of a solution as described above yields a solutioh with at leastk/n%/?~¢
vertices. O

Lemmas 2 and 3 transform the NP-hard promise problem akiMum CLIQUE, where we are
promised that the optimum solution consists of either at least strictly less thark/n'/2=¢ vertices,
into the NP-hard promise problem ofAMIMUM HIDDEN SET ON POLYGON WITH HOLES, where we
are promised that an optimum solution consists of either at #&asir strictly less tham?k /n'/>=¢ 4 2n
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hidden points. Thus, MxIMUM HIDDEN SET ON POLYGON WITH HOLES cannot be approximated
with an approximation ratio of

n2k nl/2—¢

n2k/nt/2-¢ 4 2n - 2
where we have assumed that 2. We need to express the number of graph verticby the number
of polygon verticegI’| of the polygon of instancé’. Note that|7’| < 10n° and therefore: > |I'|*/3/3.
Thus,

n1/2—s |I/|l/6—5/3/31/2—8 |I/|1/6—8/3

2~ 2 T4

This yields the main result of this section.

Theorem 1. MAXIMUM HIDDEN VERTEX SET ON POLYGON WITH HOLES cannot be approximated
by any polynomial time algorithm with an approximation ratio| 61%/%~7 /4, where|I'| is the number
of vertices in the polygon, and whepe> 0, unlessNP = P.

If we restrict the hidden set to contain only vertices, we can use the same construction. Actually,
we do not need the combs, as our construction guarantees that in any solution there can be at mos
2 points hiding at vertices other than This leads to a different promise problem oAMiMuM HIDDEN
VERTEX SET OF POLYGON WITH HOLES that the promise problem of MximumMm CLIQUE is mapped
to, namely the promise problem, where we are promised that an optimum solution consists of either at
leastk vertices or strictly less thak/n/?>~¢ + 2 vertices. Straightforward analysis, using the fact that
|I'| < 5n?, leads to the following result.

Theorem 2. MAXIMUM HIDDEN VERTEX SET ON POLYGON WITH HOLES cannot be approximated
by any polynomial time algorithm with an approximation ratio| 61/4~” /4, where|I'| is the number
of vertices in the polygon, and whepe> 0, unlessNP=P.

3. Hidingin terrains

Theorem 3. The problem$AxiIMUM HIDDEN SET ON TERRAIN (MAXIMUM HIDDEN VERTEX SET

ON TERRAIN) cannot be approximated by any polynomial time algorithm with an approximation ratio of
(\1"1Y%7 18)(|1"|¥47 /4), where|I”| is the number of vertices in the terrain, and where- 0, unless
NP=P.

Proof. The proof very closely follows the lines of the proof for the inapproximability ofX¥Mum
HIDDEN (VERTEX) SET ON POLYGON WITH HOLES. We use the same construction, but given the
polygon with holes of instanc& we create a terrain (i.e., instané€) by simply letting all the area
outside the polygon (including the holes) have heiglior some constant > 0 and by letting the area
in the interior have height 0.

We add four vertices to the terrain by introducing a rectangular bounding box around the regular
2n-gon. This yields a terrain with vertical walls, which can be easily modified to have steep but not
vertical walls, as required by the definition of a terrain. Finally, we triangulate the terrain.
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4. Hidingin polygons without holes

We propose a gap-preserving reduction fromX\MUM 5-OCCURRENCES2-SATISFIABILITY tO
MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES, which allows us to prove the APX-hardness
of MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES. The same reduction will also work for
MAXIMUM HIDDEN VERTEX SET ON POLYGON WITHOUT HOLES with minor modifications.

Suppose we are given an instanteof MAXIMUM 5-OCCURRENCEZ2-SATISFIABILITY , which
consists ofz variablesxy, ..., x,_1 andm clausesy, ..., ¢,,_1. We construct a polygon without holes,

i.e., an instancd’ of MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES, which consists of
clause patterns and variable patterns, as shown schematically in Fig. 5. The construction consists of the
following building blocks:

We have a variable pattern for each variable that consists of a TRUE- and a FALSE-leg. We have a
clause pattern for each clause that is a simple zig-zag line forming 3 dents. The variable patterns contair
a small dent, which we will call “cone”, for each occurrence of the variable in the input satisfiability
formula. These cones “connect” the variable patterns with the clause patterns.

We construct a variable pattern for each variablas indicated in Fig. 6. Each variable pattern consists
of a TRUE- and a FALSE-leg. Each leg has on its left boundary a maximum of five triangle-shaped dents
with verticesf, for k =1, ...,5. Each of these dents represents the lower part of a cone that connects the
variable pattern to a clause pattern, in which the variable appears as a literal, as indicated in Fig. 7. Since
these dents are triangle-shaped, we call the whole deiridimgle of f;. All these triangles are attached
to a single line as indicated in Fig. 6 on their right side, i.e., the “right” line segments of each triangle in
a leg are collinear.

Each variable pattern contains at its right side exactly four dents with veitices, vz andw. The
construction is such that a point that is hiding in the triangle of Ansees the triangles of;, v, andv;
completely, but it does not see the triangleuafTherefore, we can hide in each leg a point at vertex
and additional points either in the trianglesfpfon the left side or in the triangles of on the right side,
but not in both. The idea is the following: if the variable is TRUE, then we hide points in the TRUE-leg

clause pattern

variable pattern

Fig. 5. Schematic construction.
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triangle of f, ¢
5

TRUE-leg FALSE-leg

Fig. 6. Variable pattern.

Literal x i Literal1x j

Variable pattern x; Variable pattern x;

Fig. 7. Clause pattern with cones.

of the variable pattern at vertice, fork =1,...,5 and at vertexw. In the FALSE-leg, we hide points
at verticesvy, vy, vz andw.

For each clause we construct a clause pattern as indicated in Fig. 7. A clause pattern consists of three
dents, where the left and the right dent represent the literals of the clause. The middle dent represent:
the truth value of the clause. The construction is such that we can hide three points in the clausepatterr
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(i.e., one in each dent), exactly if the clause is satisfied. We can hide only two points (one in the left and
one the right dent), otherwise. To achieve this we connect the variable patterns to the clause patterns witt
cones as illustrated in Fig. 7 for two variablgsandx; and a clauséx;, —x;). This works accordingly
for other types of clauses. Cones are drawn as thin solid lines. They are not part of the polygon boundary,
but merely help in the construction.

We will show that this reduction is gap-preserving, i.e., it maps an NP-hard promise problem
of MAXIMUM 5-OCCURRENCEZ2-SATISFIABILITY to an NP-hard promise problem of AiMuMm
HIDDEN SET ON POLYGON WITHOUT HOLES. The reduction has the following properties:

Lemma 4. If there exists a truth assignment S to the variables ofNhrexiMumM 5-OCCURRENCE
2-SATISFIABILITY instancel that satisfies at leadtl — ¢)m clauses, then there exists a soluti§hof
the MAXIMUM HIDDEN SET WITHOUT HOLES instancel” with || > 10n + 2m + (1 — &)m.

Proof. If variable x; is TRUE in S, then we let the verticeg, ..., fs andw of the TRUE-leg ofx;,
as well as the vertices,, vo, v3 andw of the FALSE-leg ofx; be in the solutionS’; vice-versa ifx; is
FALSE in S. This gives us 18 points inS'.

The remaining points fos” are in the clause patterns. Fig. 7 shows the clause pattern for a clause
(x;, —x;) 2, together with the cones that link the clause pattern to the corresponding variable patterns.
Remember that these cones are not part of the polygon boundary. To understand Fig. 7,xassume
assigned the value FALSE and is assigned the value TRUE, i.e., the clagse —x;) is not satisfied.

Then there is a point in the solution that sits at verfexfor somek) in the FALSE-leg ofy; and a point
that sits at vertexf, (for somek’) in the TRUE-leg ofy;. In this case, we can have ortlyo additional
points in the solutior§” at points[], . In the remaining three cases, where the variakjemdx; are
assigned truth values such that the clause is satisfied, we cathnegadditional points inS” at 0-:
If x; andx; are both FALSE in the solutiof§, then we hide points in the clause pattern at polnts]
and. If x; andx; are both TRUE, then we hide points in the clause pattern at paints and . If
x; iIs TRUE andx; is FALSE, then we can hide points in the clause pattern at poiahd (], and one
additional point at eitheld or [I.

Therefore, we have 2 points from all unsatisfied clauses and 3 points from all satisfied clauses, i.e.,
2em + 3(1 — ¢)m points that are hidden in the clause patterns. Thiis> 10n + 2m + (1 — ¢)m, as
claimed. O

Lemmab. If there exists a solutio’” of I’ with |S’| > 10n 4+ 3m — (e + y)m, then there exists a variable
assignment of I that satisfies at leastl — ¢ — y)m clauses.

Proof. For any solutionS’, we can assume that in each leg of each variable pattern, all poiStsane
either in the triangles of verticef, ..., fs andw, or in the triangles of vertices,, v,, vz andw. To see

this, note that there can be at most one point in each leg outside the triangles. This point eitheoisees
at least one of the triangles, v,, v3. In the first case, we can move the poinutoln the second case, we
move it to they, in sight. This results again in a feasible solution. Furthermore, any point in any triangle
of fi,..., fs sees the triangles of, v,, v3 completely (and vice-versa.

2The proofs work accordingly for other types of clauses, suodxas ;).
3We need the triangle ab to ensure that, if there are points hiding in the triangles offitie, there can be no additional
point hiding outside the triangles in the leg.
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As afirst step in transforming the solutidty we move the points that are hiding in the triangles to the
vertices fi, v1, v, vz andw, respectively. This transformation is obviously no problem for the triangles
of vy, v2, v3 @andw. Moving the points in the triangles of verticgg will slightly change the cones that
they see as indicated in Fig. 7 through dashed lines. However, we can still position at least the same
number of points in the clause patterns. Thus, this transformation yields a feasible hidden set of points
that consists of at least as many points as the original solution.

We now describe how to transform the soluti®n(with |S’| > 10n + 3m — (¢ + y)m) in such a way
that it remains feasible, that its size (i.e., the number of hidden points) does not decrease, and that we will
be able to assign truth values to the variables. Hence our goal is that at the end, we have for each variabl
pattern the six points afy, ..., fs, andw from one leg in the solution and the 4 points vo, vz andw
from the other leg. Thus, we can easily obtain a truth assignment for the variables by letting variable
be TRUE iff the six points atf, ..., fs andw from the TRUE-leg are in the solution. We now show
how to transform a feasible hidden set of points into one that obeys to these additional properties without
decreasing the number of hidden points.

Hence, for any variable; we show how to transform the two legs corresponding; imto the desired
configuration. Note that the construction of the TRUE-leg and the FALSE-leg are symmetric. For the
case analysis, we may therefore assume without loss of generality that there are at least as many point
hiding in the f; triangles of the TRUE-leg as in thg triangles of the FALSE-leg.

e Ifthere are 5 points hidden at verticgsof the TRUE-leg ofy; and 5, 4, 3, 2 or 1 point(s) at verticgs

of the FALSE-leg, then we delete the points in the FALSE-leg and set 3 hidden points at vertices

of the FALSE-leg. This yields a better solution, since the difference of guards in the variable pattern

is -2, -1, 0,+1, 42 and we can position 5, 4, 3, 2, 1 additional guards in the dents of the clause

patterns that correspond to literals xpf These additional guards could not have been placed in the
original solution, since the whole area of the dents was seen by the points at véftimelsoth the

TRUE- and the FALSE-leg.

e If there are 4 points hidden at verticgs of the TRUE-leg ofx; and 4, 3, 2 or 1 point(s) at verticeg’

of the FALSE-leg, then we delete the points in the FALSE-leg and set 3 hidden points at vert€es

the FALSE-leg. Moreover, we place an additional point at the one vefitéx the TRUE-leg, where

there is not already a point hiding. Again, this yields a better solution, since the difference of guards

in the variable pattern is G+1, +2, +3 and we can position at least 3, 2, 1, 0 additional guards in the

dents of the clause patterns that correspond to literats, @fhich was impossible before. Because of

the additional guard af; in the TRUE-leg, we might lose at most one hidden point in a middle dent

of a clause pattern.

o If we have 4 points hidden at verticgs of the TRUE-leg and no points at verticggs of the FALSE-

leg, then we place 1 additional guard at the one vertex where there is not already a point hidden. This

yields an equally good solution, since we have 1 additional points in the variable pattern and at most

1 fewer point in the middle dents of clause patterns.

o If there are at most 3 points hidden at the vertige®r the TRUE-leg, we first remove all the points

in the f; triangles of the TRUE- and the FALSE-leg and put points intowh&iangles of both legs

instead. This does not reduce the number of hiding points. We then argue as follows. Let us assume

without loss of generality that the litera)] appears more often in the formula than;. In this case,

we remove the 3 hiding points in the triangles of the TRUE-leg and replace them by 5 points in the

fx triangles of the TRUE-leg. This yields a better or equally good solution, since we have 2 additional
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guards in the variable pattern and we lose at most 2 guards in the middle dents of clause patterns a:
we falsify at most 2 clauses.
As a last step in the transformation, we add points at each vertiexeach leg, if there are no points
hiding there already.
Thus, the transformed solutidf consists of at least 10+ 3m — (¢ + y)m points, 1@ of which lie in
the variable patterns. At most 3 points can lie in each clause pattern. If 3 points lie in a clause pattern, then
this clause is satisfied. Therefore, if 2 points lie in each clause pattern, there are still &t least y)m
additional points inS’. These must lie in clause patterns as well. Therefore, at(éast — y)m clauses
are satisfied. O

Lemmas 4 and 5 transform the promise problem ef¥ium 5-OCCURRENCE3-SATISFIABILITY
into a promise problem of MxiIMUM HIDDEN SET WITHOUT HOLES. In the promise problem of
MAXIMUM 5-OCCURRENCEZ2-SATISFIABILITY , we are promised that an optimum solution either
satisfies at leagtl — ¢)m clauses or strictly less that— ¢ — y)m clauses for some constanty > 0. For
small enough valuesof ¢, y > 0, it is NP-hard to decide, which of the two cases is true. This follows
from the fact that MxXIMUM 5-OCCURRENCE3-SATISFIABILITY is APX-complete. In the promise
problem of MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLES, we are promised that either at
least 1@ + 3m — em points can be hidden from each other, or strictly less than1Gm — (¢ + y)m
points can be hidden from each other. Again, it is NP-hard to decide, what is true. ThusyiM
HIDDEN SET ON POLYGON WITHOUT HOLES cannot be approximated with an approximation ratio of

10n 4+ 3m —em 10 +3m —em — ym ym

1 +3m—(etyym 10+ 3m—em—ym 100+ 3m—em—ym
ym ym 14
-1 >1+— 2 >14+
+10n+3m—8m—ym +m(33—8—y) +33
We have used that > n/3. Thus:

Theorem 4. MAXIMUM HIDDEN SET ON POLYGON WITHOUT HOLESis APX-hard.

If we restrict the hidden set to consist of only vertices, we can use the same reduction and the
same analysis with the modification that we introduce additional vertices in each clause pattern. More
specifically, we replace each edge of all dents of the clause patterns by two, slightly convex edges that
have their common endpoint right where the corresponding po#it from Fig. 7 is. Thus, the result
carries over.

Theorem 5. MAXIMUM HIDDEN VERTEX SET ON POLYGON WITHOUT HOLES is APX-hard.

5. Conclusion

We have shown that the problemsaMiMmum HIDDEN (VERTEX) SET ON POLYGON WITH HOLES
and MaxiIMuM HIDDEN (VERTEX) SET ON TERRAIN are almost as hard to approximate asiMum

4\We needs as a second parameter, since we can find out in polynomial time, whether all clauses /fisuUwh
5-OCCURRENCEZ2-SATISFIABILITY instance are satisfiable [12]; only the optimization version oixyium 5-Oc-
CURRENCE2-SATISFIABILITY is NP-hard.
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CLIQUE. We could prove for all these problems an inapproximability ratio G QY3-), but under the
assumption that col2 NP, using the stronger inapproximability result foaMiMmum CLIQUE from [9].
Furthermore, we have shown thattMiMmumMm HIDDEN (VERTEX) SET ON POLYGON WITHOUT HOLES

is APX-hard. As for approximation algorithms, an approximation algorithm for all considered problems
that simply returns a single vertex achieves an approximation ratio NbD approximation algorithms

are known that achieve approximation ratios ¢f)o

Note that our proofs can easily be modified to work as well for polygons or terrains, where no three
vertices are allowed to be collinear.

We have classified the problemsaMiMum HIDDEN (VERTEX) SET ON POLYGON WITH HOLESand
MAXIMUM HIDDEN (VERTEX) SET ON TERRAIN to belong to the class of problems inapproximable
with an approximation ratio ok* for somee > 0, as defined in [1]. The APX-hardness results for
the problems for polygons without holes, however, do not precisely characterize the approximability
characteristics of these problem. The gap between the best (known) achievable approximation ratio
(which isn) and the best inapproximability ratio is still very large for these problems and should be
closed in future research.
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